The human spinal cord interprets velocity-dependent afferent input during stepping
نویسندگان
چکیده
منابع مشابه
Human lumbosacral spinal cord interprets loading during stepping.
Studies suggest that the human lumbosacral spinal cord can generate steplike oscillating electromyographic (EMG) patterns, but it remains unclear to what degree these efferent patterns depend on the phasic peripheral sensory information associated with bilateral limb movements and loading. We examined the role of sensory information related to lower-extremity weight bearing in modulating the ef...
متن کاملRecruitment of spinal motor pools during voluntary movements versus stepping after human spinal cord injury.
We investigated the activation of lower limb motor pools by supraspinal and spinal networks after human spinal cord injury (SCI). We compared electromyographic (EMG) activity from six muscles during voluntarily attempted non-weight-bearing single-joint movements, multijoint movements approximating stepping in a supine position, and weight-bearing stepping on a treadmill with body weight support...
متن کاملPlantar cutaneous afferents normalize the reflex modulation patterns during stepping in chronic human spinal cord injury.
Plantar cutaneous afferent transmission is critical for recovery of locomotion in spinalized animals, whereas a phase-dependent reflex modulation is apparent during fictive or real locomotion. In nine people with a chronic spinal cord injury (SCI) the effects of foot sole stimulation on the soleus H-reflex and tibialis anterior (TA) flexion reflex modulation patterns during assisted stepping we...
متن کاملSomatosensory unit input to the spinal cord during normal walking.
Chronic recording techniques in freely walking cats have been used to sample unitary activity from most large myelinated afferent classes. Cutaneous mechanoreceptors are highly sensitive and generate regular activity patterns predictable from their modalities. Knee joint afferents can fire briskly midrange locomotory movements but appear to be influenced by factors other than joint angle. Golgi...
متن کاملAfferent input modulates neurotrophins and synaptic plasticity in the spinal cord.
The effects of eliminating or decreasing neuromuscular activity on the expression of neurotrophins and associated molecules in the spinal cord and subsequent effects on spinal cord plasticity were determined. Spinal cord isolation (SI), which eliminates any supraspinal and peripheral monosynaptic input to the lumbar region but maintains the motoneuron-muscle connectivity, decreased the levels o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Brain
سال: 2004
ISSN: 1460-2156
DOI: 10.1093/brain/awh252